Spatial Relation of Apparent Soil Electrical Conductivity with Crop Yields and Soil Properties at Different Topographic Positions in a Small Agricultural Watershed
نویسندگان
چکیده
Use of electromagnetic induction (EMI) sensors along with geospatial modeling provide a better opportunity for understanding spatial distribution of soil properties and crop yields on a landscape level and to map site-specific management zones. The first objective of this research was to evaluate the relationship of crop yields, soil properties and apparent electrical conductivity (ECa) at different topographic positions (shoulder, backslope, and deposition slope). The second objective was to examine whether the correlation of ECa with soil properties and crop yields on a watershed scale can be improved by considering topography in modeling ECa and soil properties compared to a whole field scale with no topographic separation. This study was conducted in two headwater agricultural watersheds in southern Illinois, USA. The experimental design consisted of three basins per watershed and each basin was divided into three topographic positions (shoulder, backslope and deposition) using the Slope Position Classification model in ESRI ArcMap. A combine harvester equipped with a GPS-based recording system was used for yield monitoring and mapping from 2012 to 2015. Soil samples were taken at depths from 0–15 cm and 15–30 cm from 54 locations in the two watersheds in fall 2015 and analyzed for physical and chemical properties. The ECa was measured using EMI device, EM38-MK2, which provides four dipole readings ECa-H-0.5, ECa-H-1, ECa-V-0.5, and ECa-V-1. Soybean and corn yields at depositional position were 38% and 62% lower than the shoulder position in 2014 and 2015, respectively. Soil pH, total carbon (TC), total nitrogen (TN), Mehlich-3 Phosphorus (P), Bray-1 P and ECa at depositional positions were significantly higher compared to shoulder positions. Corn and soybeans yields were weakly to moderately (<±0.75) correlated with ECa. At the deposition position at the 0–15 cm depth ECa-H-0.5 was weakly correlated (r < ±0.50) with soil pH and was moderately correlated (r = ±0.50–±0.75) with organic matter (OM), calcium (Ca) and sulfur (S). Slope variation from 1%–20% at the research site had a strong influence on soil properties at watershed scale. When data from all topographic positions were combined together in all basins spatial interpolation between Mehlich-3 P and ECa-H-0.5 resulted in a larger cross validation RMSE compared to individual shoulder and backslope positions. Results demonstrated that topographic position should be considered while making correlations of ECa with soil properties. Methods of delineating topography positions presented in this paper can easily be replicated on other fields with similar landscape characteristics and EMI sensor based survey techniques can certainly improve and help in making detailed prediction maps of soil properties.
منابع مشابه
Applying Spatial Geostatistical Analysis Models for Evaluating Variability of Soil Properties in Eastern Shiraz, Iran
ABSTRACT- The information on the spatial properties of soil is vital to improve soil management and to increase the crop productivity. Geostatistical analysis technique is one of the most important methods for determining the spatial properties of soil. The aim of this study was to investigate spatial variability of soil chemical and physical attributes for field management in eastern Shiraz, I...
متن کاملInfluence of organic compost compounds on soil chemical and physical properties
This study was conducted to evaluate the impact of municipal waste compost and manure on soil chemical and physical properties quality and crop production in Sari city (north of Iran). In this study, the effect of compost and manure (cow and sheep) on the quality of soil organic material with experimental measurements was investigated. An experiment was conducted in a completely randomized desi...
متن کاملتوصیف آماری متغیرهای عملکرد و اجزای عملکرد گندم با خصوصیات فیزیکوشیمیایی خاک با استفاده از آنالیز گام به گام
Abstract Introduction Characterization of physical and chemical soil criteria is a key step in understanding the source of spatial variability in the productivity across agricultural fields (21). Crop yield variability can be caused by many factors, including spatial variability of soil texture, crop management, soil physical and chemical properties and nutrient availability (45). Understandin...
متن کاملAssessment the Effect of Different Planting Pattern (Rice-Wheat, Corn-Wheat) and Growth Stage on Soil Chemical Properties
Conducting research on monitoring contaminated fields by heavy metals is necessary in order to achieve sustainable agriculture, increase product quality and keep public health. This study was carried out using split plot experiment based on randomized complete blocks design with three replications during 2014-2015 in Shavor Agricultural Research Center in order to evaluate the effect of croppin...
متن کاملSOIL MANAGEMENT Identifying Soil Properties that Influence Cotton Yield Using Soil Sampling Directed by Apparent Soil Electrical Conductivity
tially variable soil properties that affect crop yield to better optimize crop productivity and to maintain the Crop yield inconsistently correlates with apparent soil electrical sustainability of agriculture. conductivity (ECa) because of the influence of soil properties (e.g., Site-specific crop management is the management of salinity, water content, texture, etc.) that may or may not influe...
متن کامل